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Abstract—Developing a remote exploit is not easy. It requires
a comprehensive understanding of a vulnerability and delicate
techniques to bypass defense mechanisms. As a result, attackers
may prefer to reuse an existing exploit and make necessary
changes over developing a new exploit from scratch. One such
adaptation is the replacement of the original shellcode (i.e., the
attacker-injected code that is executed as the final step of the
exploit) in the original exploit with a replacement shellcode,
resulting in a modified exploit that carries out the actions desired
by the attacker as opposed to the original exploit author. We call
this a shellcode transplant.

Current automated shellcode placement methods are insuffi-
cient because they over-constrain the replacement shellcode, and
so cannot be used to achieve shellcode transplant. For example,
these systems consider the shellcode as an integrated memory
chunk, and require that the execution path of the modified exploit
must be same as the original one. To resolve these issues, we
present ShellSwap, a system that uses symbolic tracing, with a
combination of shellcode layout remediation and path kneading to
achieve shellcode transplant. We evaluated the ShellSwap system
on a combination of 20 exploits and 5 pieces of shellcode that are
independently developed and different from the original exploit.
Among the 100 test cases, our system successfully generated
85% of the exploits.

I. INTRODUCTION

Remote exploits are extremely dangerous. With the help
of remote exploits against a piece of software running on
a victim computer, an attacker can install backdoors and
exfiltrate sensitive information without physical access to the
compromised system, leading to real-world impacts on the
finances and reputation of the victim.

However, developing a remote exploit is not easy. A
comprehensive understanding of the vulnerability is a must,
and complex techniques to bypass defenses on the remote
system are necessary. When possible, rather than developing
a new exploit from scratch, attackers prefer to reuse existing
exploits in their attacks, making necessary changes to adapt
these exploits to new environments. One such adaptation is
the replacement of the original shellcode (i.e., the attacker-
injected code that is executed as the final step of the exploit)
in the original exploit with a replacement shellcode, resulting
in a modified exploit that carries out the actions desired by
the attacker as opposed to the original exploit author. We
call this a shellcode transplant. Shellcode transplanting has
many applications, including reversing command and control
protocols, understanding captured exploits, and replaying
attacks. Thus, this capability is very helpful in situations ranging

from rapid cyber-response (i.e., quick analysis of and response
to 0-day attacks) and adversarial scenarios (like cyber-security
Capture-The-Flag competitions or cyber warfare in the real
world). Unfortunately, current techniques to transplant shellcode
generally require an analyst to have a decent understanding
of how the original exploit interacts with the program, what
vulnerability it triggers, and how it bypasses deployed exploit
mitigations. As a result, the analyst must put a lot of effort
into development and debugging, which negates much of the
advantage of shellcode transplanting.

In investigating this problem, we identified three main
challenges to tackling the shellcode transplant problem. First,
it is very difficult to separate the shellcode from the rest of an
exploit, as there is generally no clear boundary separating
one from the other. Second, as an exploit’s shellcode is
commonly constructed through non-trivial data transformations,
even if the bytes representing the original shellcode could
be separated from the exploit, rewriting these bytes to a
replacement shellcode would be non-trivial. Third, the shellcode
and the remainder of the content in an exploit can be mutually
dependent on each other (e.g., a field in the exploit payload
may dictate the size of the embedded shellcode). Such relations
can pose potentially complex constraints on any replacement
shellcode that might be transplanted. When those constraints
are violated by replacement shellcode, it is challenging to
modify the exploit and/or the replacement shellcode in order
for the modified exploit to function properly.

Previous work in the field of automated exploit generation
generates exploits by constraining the memory bytes in each
attacker-controlled buffer to the target shellcode. They enumer-
ate all possible offsets in every attacker-controlled buffer until
a solution is found [12, 17]. Such methods are insufficient.
In the worst case, when attempting to compensate for the
case of conflicting constraints on the replacement shellcode,
these methods degenerate to a symbolic exploration of the
program, which generally ends in a path explosion problem or
is hampered by the inability of the symbolic execution engine
to efficiently reverse complex data transformations. In fact, as
we show in our evaluation, less than a third of the original
exploits in our dataset can be modified by existing techniques.

In this paper, we present ShellSwap, an automated system
that addresses the shellcode transplant problem. ShellSwap
takes an existing exploit and a user-specified replacement
shellcode as input and produces a modified exploit that



targets the same vulnerability as the original exploit does
but executes the replacement shellcode after exploitation.
ShellSwap tackles the challenges discussed above with a
mix of symbolic execution and static analysis techniques,
applying novel techniques to identify the original shellcode,
recover the data transformation performed on it, and resolve
any conflicts introduced by the transplant of the replacement
shellcode. By utilizing information obtained from the original
exploit and creatively transforming the replacement shellcode,
ShellSwap rarely degrades to a pure symbolic exploration,
and is thus more efficient and effective compared to previous
solutions.Additionally, the use of carefully-designed systematic
approaches enables ShellSwap to transplant more shellcode
variants. In our experiment, ShellSwap successfully generates
new exploits for 85% of all cases, which is almost three times
the success rate of prior techniques.

To the best of our knowledge, ShellSwap is the first
automated system that modifies exploits based on shellcode
provided by analysts. In terms of offense, ShellSwap greatly
reduces the overhead in attack reflection, which enables prompt
responses to security incidents like 0-day attacks, especially
in a time-constrained, competitive scenario such as a hacking
competition or cyber warfare. ShellSwap also makes it possible
for entities to stockpile exploits in bulk, and tailor them to
specific mission parameters before they are deployed at a later
time. As organizations such as the National Security Agency are
commonly known to be stockpiling caches of vulnerabilities,
such a capability can greatly reduce the overhead in using
weapons from this cache. ShellSwap is also helpful in defense,
where it can be used to debug exploits discovered in the
wild (i.e. by transplanting a piece of shellcode that is benign
or implements monitoring and reporting functionality) and
rediscover vulnerabilities being exploited.

Specifically, our paper makes the following contributions:
• We design the ShellSwap system, which is the first end-

to-end system that can modify an observed exploit and
replace the original shellcode in it with an arbitrary re-
placement shellcode. Our system shows that the automatic
exploit reuse is possible: even a person who has little
understandings about security vulnerabilities can retrofit
an exploit for their custom use-case.

• We propose novel, systematic approaches to utilize in-
formation from the original exploit to prevent ShellSwap
from degenerating to inefficient symbolic exploration, and
revise the replacement shellcode without changing its
semantics to fit constraints implicit to the original exploit.
Those approaches are essential to the performance of
ShellSwap.

• We evaluate our system on 100 cases — 20 original
exploits, each with 5 different pieces of shellcode. Our
system successfully generates modified exploits in 85% of
our test set, and all new exploits work as expected. We
also compare our system with the previous state of the art,
and we find that previous methods only work for 31% of
our test set. The fact that ShellSwap exhibits a success rate
almost triple that of the previous solution implies that the

impact of the challenges inherent in shellcode transplant
were under-estimated, and that future work targeting this
problem will be beneficial.

II. OVERVIEW

ShellSwap takes, as an input, a vulnerable program, the
original exploit that had been observed being launched against
this program, and a replacement shellcode that the original
shellcode in the original exploit should be replaced with. Given
these inputs, it uses a combination of symbolic execution and
static analysis to produce a modified exploit that, when launched
against the vulnerable program, causes the replacement shell-
code to be executed.

Our intuition for solving the shellcode transplant problem
comes from the observation that a successful control flow
hijacking exploit consists of two phases: before the hijack,
where the program state is carefully set up to enable the
hijack, and after the hijack, when injected shellcode carries
out attacker-specified actions. We call the program state after
the first phase the exploitable state, and we call the instruction
sequence that the program executes until the exploitable state
the exploit path. An input that makes the program execute the
same path as the original exploit does will lead the program
to an exploitable state. Therefore, if we find an input that
executes the instructions of the original exploit path in the first
phase and the new shellcode in the second phase, that input
represents the modified exploit.

Given these inputs, it proceeds through a number of steps,
as diagrammed in Figure 1. The steps for generating the new
exploit are as follows:
Symbolic Tracing. The path generator replays the exploit

in an isolated environment and records the executed
instructions. The output of the path generator is a sequence
of instruction addresses, which we call the dynamic exploit
path.
The path generator passes the dynamic exploit path to the
symbolic tracing engine. Then tracer sets the input from
the exploit as a symbolic value and starts symbolically
executing the program. At every step of this execution,
the tracer checks if the current program state violates
a security policy. There are two reasons for this: a) we
want to double check that the exploit succeeds, and b) we
need to get the end of the normal execution and the start
of malicious computation, where the exploit diverts the
control flow of the program to the shellcode. When the
tracer detects that the security policy has been violated,
it considers the trace complete and the exploitable state
reached.
The tracing engine records the path constraints introduced
by the program on the exploit input in order to reach
the exploitable state, and the memory contents of the
exploitable state itself. These will be used in the next
step to surmount challenges associated with shellcode
transplanting.

Shellcode Transplant. Shellcode transplant is the critical step
in the ShellSwap system. It takes the exploitable state, the
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Fig. 1: The architecture of the ShellSwap system.

path constraints, and the replacement shellcode as input,
and outputs a modified exploit that takes advantage of
the vulnerability and executes the replacement shellcode.
After this step, the system will output either the modified
exploit or an error indicating that a modified exploit could
not be found.

These steps are further described in Section III (for Symbolic
Tracing) and Section IV (for Shellcode Transplant).

ShellSwap focuses on exploits against control-flow hijack-
ing vulnerabilities, which are a type of software bug that
allows an attacker to alter a program’s control flow and
execute arbitrary code (specifically, the shellcode). Control-
flow hijacking vulnerabilities have been considered as the most
serious vulnerabilities, since the attacker can take control of
the vulnerable system. Unfortunately, control-flow hijacking
vulnerabilities are the most prevalent class of vulnerabilities
in the real world: over the past 18 years, 30.6% of reports in
the Common Vulnerabilities and Exposures database represent
control-flow hijacking vulnerabilities [15]. Thus, while the
ability to reason about other types of exploits would be
interesting, we leave the exploration of this to future work.

A. Motivating Example

To better communicate the concept of shellcode transplant
and demonstrate the challenges inherent to it, we provide a
motivating example. We first introduce a vulnerable program
and an original exploit, and then discuss the challenges posed
by two different instances of replacement shellcode.

1) Vulnerable program: Consider a vulnerable program with
source code shown in Listing 1, where the program receives a
string terminated by a newline, checks the first character and
calculates the length of the string. Note that the source code is
for clarity and simplicity; our system runs on binary program
and does not require source code.

1 int example(){
2 int len = 0;
3 char string[20];
4 int i;
5 if (receive_delim(0, string, 50, '\n') != 0)
6 return -1;
7 if(string[0] == '^')
8 _terminate(0);
9 for(i = 0; string[i] != '\0'; i++)
10 len++;
11 return len;

12 }

Listing 1: Motivating Example.
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Fig. 2: The stack layout of the example function.

This program has a control-flow hijacking vulnerability in the
processing of the received input. The string variable is a 20-
byte buffer defined at line 3. However, the string received from
user input can have up to 50 characters, which will overflow
the buffer string and eventually overwrite the return address
stored on the stack if the provided string is long enough.
Figure 2 shows the stack layout of the example function.
The saved return address (shown as saved %eip) is 36 bytes
above the beginning of buffer string. This implies that if
the received input has more than 36 characters, the input will
overwrite the saved return address and change the control flow
of the program when function example returns.

1 shellcode = "\x31\xc0\x40\x40\x89\x45\xdc"
2 exploit = shellcode + "\x90" * (36 - len(

shellcode)) + "\x50\xaf\xaa\xba\n"

Listing 2: The original exploit with shellcode.

2) Original exploit: Listing 2 shows the original exploit for
the running example. The shellcode starts at the beginning
of the exploit, followed by padding and the address with
which to overwrite the return address. When the vulnerable
program executes with the original exploit, the return address
for function example will be changed to 0xbaaaaf50, which
points to the beginning of buffer string, and when function
example returns, the control flow will be redirected to the
shellcode.



B. Challenges

To demonstrate the challenges inherent in the shellcode
transplant problem, we first consider a naive approach: if
we find the location of the old shellcode in the original
exploit, we could generate a new exploit by replacing, byte
by byte, the old shellcode with the new one. We call this
the shellcode byte-replacement approach. However, this naive
approach assumes two things, that the shellcode stays in its
original form throughout execution and that the replacement
shellcode is the same size as the original shellcode. As we
discussed previously, both of these assumptions are too strict
for real-world use cases.

For example, consider the following replacement shellcode
for the original exploit in our motivating example:

1 xor %esi,%esi 31 f6
2 lea 0x1(%esi),%ebx 8d 5e 01
3 lea 0x8(%esi),%edx 8d 56 08
4 push 0xaaaaaaaa ff 35 aa aa aa aa
5 push $0xdddddddd 68 dd dd dd dd
6 mov %esp,%ecx 89 e1
7 lea 0x2(%esi),%eax 8d 46 02
8 int $0x80 cd 80

Listing 3: The disassembly of the replacement shellcode
shellcode1.

If we apply the shellcode byte-replacement method, the
modified exploit be:

1 shellcode = "\x31\xf6\x8d\x5e\x01\x8d\x56\x08\
xff\x35\xaa\xaa\xaa\xaa\x68\xdd\xdd\xdd\xdd\
x89\xe1\x8d\x46\x02\xcd\x80"

2 exploit = shellcode + "\x90" * (36 - len(
shellcode)) + "\x50\xaf\xaa\xba\n"

Listing 4: The modified exploit for shellcode1 using the
shellcode replacement approach.

However, the modified exploit will not work when applied to
our motivating example. Figure 3a shows the stack layout before
function example starts. Besides saved registers, there are
two variables between string and the saved %eip. When the
program receives an input, the resulting stack layout is shown
in Figure 3b. However, control is not immediately transferred
to the shellcode. The program continues, and because variable
len is updated before returning, the value at this address
changes. By the time the function transfers control flow to
the shellcode, the program changes the 20th through the 28th
bytes of the replacement shellcode, as shown in Figure 3c. In
our example, this represents unexpected modification to the
replacement shellcode, rendering it nonfunctional.

In some cases, previous work is, using very resource-
intensive techniques, capable of re-finding the vulnerability
and re-creating an exploit, but these systems all suffer from
extreme scalability issues because they approach vulnerability
detection as a search problem. If we do not want to re-
execute these resource-expensive systems to re-identify and
re-exploit vulnerabilities, a new approach is needed. To this end,
we identified two main categories of challenges in shellcode
transplanting: one dealing with the layout of memory at the

time the vulnerability is triggered, and the other having to
do with the actions taken in the path of execution before the
vulnerability is triggered.

1) Memory conflicts: Previous work [12, 17] places shell-
code in memory by querying a constraint solver to solve
the constraints generated in the Symbolic Tracing step and
concretizing a region of memory to be equal to the desired
shellcode. However, as is the case in our naive byte-replacement
approach, this is not always possible: often, when dealing with
fine-tuned exploits, there is simply not enough symbolic data
in the state to concretize to shellcode [29].

For example, recall the shellcode in Listing 4 in the context
of our motivating example. This piece of shellcode is 26 bytes
long, which should have fit into the 50 bytes of user input.
However, the 20th through the 28th byte are overwritten, and
the 36th through 40th byte must be set to the address of the
shellcode (to redirect control flow). This leaves three symbolic
regions: a 20-byte one at the beginning of the buffer, an 8-byte
one between the ret and len variables and the saved return
address, and the 10 bytes after the saved return address. None
of these regions are big enough to place this shellcode, causing
a memory conflict for the shellcode transplanting process.

2) Path conflicts: To drive program execution to the ex-
ploited state, the content of the modified exploit must satisfy
the path constraints recovered from the Symbolic Tracing step.
However, by requiring the replacement shellcode to be in the
memory of the exploitation state, we add new constraints
(“shellcode constraints”) on the exploit input. These new
conditions may be conflict with those generated along the
path. We call such conflict the path conflict. In the presence
of such a conflict, if we locate the replacement shellcode in
the exploitation state (and discard the path constraints that
conflict with this), the exploit path will change, and the new
program state resulting from the changed path may not trigger
the vulnerability.

For example, consider the replacement shellcode in Listing 5
in the context of the motivating example.

1 push $0x0 6a 00
2 push $0xa65 68 65 0a 00 00
3 push $0x646f636c 68 6c 63 6f 64
4 push $0x6c656873 68 73 68 65 6c
5 mov $0x2,%eax b8 02 00 00 00
6 mov $0x1,%ebx bb 01 00 00 00
7 mov %esp,%ecx 89 e1
8 mov $0xa,%edx ba 0a 00 00 00
9 lea 0x10(%esp),%esi 8d 74 24 10
10 int $0x80 cd 80

Listing 5: The disassembly of the replacement shellcode.
shellcode2.

When the running example executes with an input string,
the for loop body before the return increments i until
string[i] is a null byte. For the original exploit, the loop
will repeat for 40 times (the length of the exploit string),
meaning that the path constraints will mandate that the first 40
bytes of string are not null. For the replacement shellcode,
however, if we locate the new shellcode at the beginning of
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Fig. 3: The stack layout of function example at runtime.

string, the loop will only iterate once, because the second
byte of the shellcode is null. This creates a contradiction
between the path constraints and the shellcode constraints.

3) Surmounting the challenges: The intelligent reader can
certainly envision approaches to achieve shellcode transplanting
in the motivating example. However, this example is just 12
lines of code. One can see that, with bigger examples and in
the general case, these challenges can be quite complicated to
surmount.

In the rest of the paper, we will discuss how to identify
conflicts while transplanting the shellcode and how to satisfy
both memory and path conflicts to successfully transplant
shellcode in a wide variety of exploits.

III. SYMBOLIC TRACING

Essentially, ShellSwap separates the entire execution of the
original exploit into two phases: before the control-flow hijack
and after the control-flow hijack. The Symbolic Tracing step
analyzes the former. The goal of this step is to generate the
exploitable state of the program and record the path constraints
that are induced by conditional branches that are encountered
on the path. This involves two main considerations.

First, we must determine when the control-flow hijack occurs.
We do this by leveraging the concept of security policies,
which has been thoroughly explored by researchers [10, 16,
18, 21, 32]. In our work, we use the well-studied taint-based
enforceable security policy [26, 32]. This policy determines
whether or not a program state is safe by checking the
instruction being executed. If the instruction directly is tainted
by remote input, then the program state is deemed unsafe and
the path is terminated.

Second, we must determine how to perform the tracing, as
there are several possible techniques that might be used here.
For example, we could use dynamic taint analysis to identify
when executed instructions are tainted by input data. While
this would be relatively fast, taint analysis is not sufficient.
Although it can identify violations to our security policy caused
by tainted input, it cannot recover and track path constraints.
Thus, in our system, we apply concolic execution to trace the
path that the exploit runs on the program. We ensure tracing

accuracy in two ways: we record a dynamic trace of the exploit
process (and require that our symbolic trace conform to the
same instructions), and we pre-constrain the symbolic data to
be equal to the original exploit. The former avoids the path
explosion inherent in concolic execution exploration (because
we only care about the branch that the exploit chooses), and the
latter greatly simplifies the job of the symbolic constraint solver
during tracing (by providing it with a pre-determined solution).
This method is similar to the pre-constraint tracing and the
input pre-constraining approach proposed by Driller [30] (and,
in fact, part of the implementation derives off of Driller’s
tracing module).

The trace-directed symbolic execution takes a program and
an original exploit and produces path constraints and the
exploitable state. The exploitable state includes the symbolic
value of registers and memory at the moment that the program
starts to execute the shellcode. After this step completes,
the pre-constraints introduced in the beginning are removed,
making it possible to constrain some of the memory in the
exploitable state to contain values representing, for example,
the replacement shellcode. The remaining path constraints
guarantee that any satisfying input will make the program to
execute the same execution trace and triggers the vulnerability.

IV. SHELLCODE TRANSPLANT

After the exploitable state and the path constraints associated
with it have been recovered, ShellSwap can attempt to re-
constrain the shellcode to be equal to the replacement shellcode
by adding shellcode constraints. However, as discussed in
Section II, the shellcode constraints may conflict with the
path constraints. Previous work [12, 17] addresses this issue by
trying other shellcode locations, but even the simple motivating
example in Section II is too complicated for this to work.

The Shellcode Transplant steps attempts to resolve these
conflicts. If it can do so, the modified exploit, containing the
replacement shellcode, is produced. If it fails, it returns an
error indicating that the exploit could not be found.

The step proceeds in several phases, in a loop, as shown in
Figure 4. First, in the Preprocessing phase, ShellSwap identifies
possible memory locations into which replacement shellcode



(or pieces of it) can be placed. Next, in the Layout Remediation
phase, it attempts to remedy memory conflicts (as discussed
in Section II-B) and fit the replacement shellcode into the
identified memory locations, performing semantics-preserving
modifications (such as code splitting) if necessary. If this fails
due to a resulting conflict with the path constraints (a path
conflict, as discussed in Section II-B), ShellSwap enters the
Path Kneading phase and attempts to identify alternate paths
that resolve these conflicts while still triggering the vulnerability.
If such a path can be found, its constraints replace the path
constraints, and the system repeats from the preprocessing
phase.

If ShellSwap encounters a situation where neither the
memory conflicts nor the path conflicts can be remedied, it
triggers the Two-Stage Fallback and attempts to repeat the
Shellcode Transplant stage with a fallback, two-stage shellcode.

A. Preprocessing

Before the system tries to locate the new shellcode, it scans
the memory in the exploitable state to identify symbolic buffers.
A symbolic buffer is a contiguous memory where all bytes
are symbolic. To find symbolic buffers, our system iterates the
bytes of the memory, marking each contiguous region. After
finding all symbolic buffers, we sort the buffers by the length
and the number of symbolic input variables involved in each
buffer. Buffers with bigger length and more symbolic values
has more varieties of concrete values, and thus are more likely
to be able to hold the replacement shellcode.

B. Layout Remediation

Given symbolic buffers from the previous phase, the system
attempts to fit the replacement shellcode into the exploitable
program state. As an innovation over prior work, ShellSwap
does not consider a piece of shellcode as an integrated memory
chunk. Instead, we model the new shellcode as a sequence
of instructions. It is not necessary to keep these instructions
contiguous; we could insert jmp instructions to “hop” from
one shellcode instruction in one symbolic buffer to another
instruction in another buffer. Thus, we attempt to fit pieces
of the shellcode (plus any necessary jump instructions) into
previously-identified symbolic buffers.

Algorithm 1 and Algorithm 2 shows the algorithms for
Layout Remediation. The system invokes function Locate,
and function Locate calls out to function Hop when needed.
Both functions take five arguments as input: SH ,ST , I, C, i, a,
where SH is the shellcode, ST is the exploitable state, I is
the symbolic buffers, C is the set of constraints for ST , i is
an index into the not-yet-written bytes of the replacement
shellcode, and a is the memory address being currently
considered by the algorithm.

We use the motivating example to demonstrate how the
algorithm works. As mentioned in Section II-B, there will
be three symbolic buffers in this example. Suppose the
ShellSwap system tries to fit the shellcode from Listing 3
to the stack of the exploitable state of the motivating example.
It calls Locate with i = 0 and a = &string, initially trying

Input :
SH : The new shellcode
ST : The current exploitable program state. ST .mem[j] means the

memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode
a: The start address that we plan to put SH [i]

Output :
E: A new exploit or Not Found

1 if i > len(SH ) then
// We have successfully put the entire piece

of shellcode to the exploitable state.
2 E ← Solve(C);
3 return E;
4 end
5 else if i < 0 then

// We cannot successfully put the entire piece
of shellcode to the exploitable state if we
put SH[i] at a.

6 return Not Found;
7 end
8 else
9 if I has enough space after a then

// Construct the new constraint asserting
the memory at a concretize to the i-th
byte of the replacement shellcode.

10 c← (ST.mem[a : a+ len(SH[i])] == SH[i]);
11 C′ ← C + c;
12 if Solve(C’) has solution then
13 ST ′ ← a new state with

ST.mem[a : a+ len(SH[i])] = SH[i];
14 a′ ← Next(I, a+ len(SH[i]));
15 return Locate(SH, ST ′, I, C′, i+ 1, a′);
16 end
17 else

// We cannot put SH[i] at a. Instead, we
need to find another location for
SH[i] and hop to the location.

18 if Hop(SH, ST, I, C, i, a) == Not Found then
19 return Not Found;
20 end
21 else
22 ST ′, a′, C′ ← Hop(SH, ST, I, C, i, a);
23 return Locate(SH, ST ′, I, C′, i+ 1, a′);
24 end
25 end
26 end
27 else
28 return Not Found
29 end
30 end

Algorithm 1: The algorithm of the Locate function.

to put the first instruction of the replacement shellcode at the
beginning of the buffer string.

The layout remediation process is shown in Figure 5. As
the first 6 instructions of the replacement shellcode satisfy the
constraints in memory, the process will continue adding new
instructions until the 7th instruction (Figure 5b). At this point,
the system fails to add the 7th instruction (because len is in
the way), so it calls function Hop, trying to jump over len
and place the 7th instruction to into the next symbolic buffer
(Figure 5c). In function Hop, it successfully finds a location
for the 7th instruction. However, the jmp instruction cannot
fit after the first 6 instructions (Figure 5d, so we roll back and
call Hop to re-locate the 6th instruction (Figure 5e). Since the
jmp instruction still covers len, this rollback occurs again,
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Input :
SH: The new shellcode
ST : The current exploitable program state. ST.mem[j] means the

memory at j in the state ST
I: The symbolic buffers generated by preprocessing
C: The constraints set
i: The index of the instruction of the shellcode. SH[i] means the bytes

for the i-th instruction of the shellcode SH .
a: The start address that we plan to put SH[i]

Output :
ST ′: The updated exploitable program state, with the jump instruction

and SH[i] in the memory.
C′: The updated constraints set
a′: The start address for the next instruction

1 if i < 0 then
// We cannot successfully hop SH[i].

2 return Not Found;
3 end
4 else

// find an address to put SH[i]
5 a′ ← None;
6 at ← Next(I, a+ lenjmp));
7 while at is not None do
8 c← (ST.mem[at : at + len(SH[i])] == SH[i]);
9 C′ ← C + c;

10 if Solve(C’) has solution then
// SH[i] can be put at ST.mem[at]

11 cjmp ← jump instruction constraint;
12 C′′ ← C′ + cjmp;
13 if Solve(C′′) has solution then

// The jump instruction can be put
at ST.mem[a]

14 ST ′ ← a new state with SH[i] and jump instruction;
15 a′ ← Next(I, at + len(SH[i]));
16 return ST ′, a′, C′;
17 end
18 end
19 else
20 at ← Next(I, at));
21 end
22 end

// We cannot hop to an address with SH[i]
after address a. Then we roll back and hop
to the previous instruction.

23 ST ′, a′, C′ ← Rollback(SH, ST, C, I, a);
24 return Hop(SH, ST ′, I, C′, i− 1, a′);
25 end

Algorithm 2: The algorithm for the Hop function.

until the 5th instruction ends up relocated, and a jmp inserted
after the 4th instruction to the 5th instruction. In the end, this
is repeated until the full shellcode is placed in memory, split
into three parts as shown in Figure 5f.

C. Path Kneading

If the system cannot find a new exploit for the new shellcode
using the exploitable state of the original exploit, we need to
diagnose the cause of conflict and tweak the path to generate
new exploitable states and new path constraints. To diagnose
the cause of conflict, we first identify the conflicting path
constraints and then check which instructions generated them.

Since shellcode is placed to the exploitable state instruction
by instruction, we can retrieve the smallest set of shellcode
constraints that cause a path conflict as soon as Locate
terminates unsuccessfully. Let c be the constraint for locating
the current instruction, and let C be the set of path constraints
set of the current state. We already know that c and C are
conflicted (otherwise, a location for the last instruction would
have been found), which implies that c ∧ C = False. To
understand the cause of the conflict, we find the smallest set
of path constraints S such that: S ⊆ C, such that:

c ∧ S = False and c ∧ (S − C) = True .

After finding the conflict subset, ShellSwap identifies the
source of each constraint in this subset by checking the
execution history for when it was introduced. If the conflicting
constraint was introduced by condition branch, ShellSwap
will tweak the path to avoid the path constraints in the
conflict subset. The intuition for this is as follows: if the
shellcode constraint contradicts a path constraint, then the
shellcode constraint does not contradict the negation of that
path constraint. For path constraints created by conditional
branches, our idea is to negate the conflict path constraints by
selecting the other branch in the program. In this way, if the
program executes along the path with the opposite branch, the
new path constraints will contain the negation of the previously-
conflicting path constraint, and the new path constraints will
not conflict with the shellcode constraint c.
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Fig. 5: The layout remediation process for the motivating example with shellcode1.

For example, consider the motivating example and the
replacement shellcode in Listing 5. As we described in
Section II-B, we encounter a path conflict because the for
loop in our example, which runs 40 times for the original
shellcode, only runs once for the replacement shellcode. Let E
be the exploit, and let Ei be the i-th byte in E. The symbolic
value of string in the exploitable state is equal to:

Concatenate(E0, E1,... , E18, E40)

which means the string from the 0th to the 40th byte of the
input. In this case, the path constraints include the following:

E0 6= ’\x00’ ∧ E1 6= ’\x00’ ∧ . . .∧ E40 6= ’\x00’

However, because the second character of the replacement
shellcode is ’\x00’, the shellcode constraints conflict with
the path constraints1.

Suppose that ShellSwap identifies this situation while trying
to place the first instruction of the replacement shellcode at

1The inquisitive reader might question why the part of the shellcode with
the null byte could not be written after the return address to bypass this loop.
However, a closer look at the replacement shellcode would reveal null bytes
in many other locations as well.

the beginning of string. After analyzing the conflicting
constraint subset, we know that the conflict stems from the
path constraint E1 6= ’\x00’, and this constraint is created
at address 0x080482F3, shown in Figure 6. Specifically, the
conflict constraint occurs at the second iteration of the for loop.

To generate a new path, we negate the conditional jump
associated with the conflicting path constraint by modifying the
trace to force an exit from the loop after the second iteration.
However, after this change, we need to merge the diversion back
to the original path. We accomplish this by leveraging static
analysis. First, we find the function containing the divergence
point, and build a control flow graph for the specific function.
Next, we statically find the descendants of the diverted node
and see if any of the descendants appear in the original path
after the negated node. For each satisfying descendant, we
attempt to construct a new path that is identical to the original
path until the negated node, followed by the detected detour
back to the descendent node that appears in the original path,
and then ending with the postfix from the descendant node to
the end of the original path.

Figure 7 shows the generation of a new path. Suppose node
nc is negated to nc′ , and node nd is the descendant of node



080482E6 mov     eax, [ebp+var_24]

080482E9 movsx   eax, [ebp+eax+buf]

080482EE cmp     eax, 0

080482F3 jz      loc_8

080482F9 mov     eax, [ebp+len]

080482FC add     eax, 1

08048301 mov     [ebp+len], eax

08048304 mov     eax, [ebp+var_24]

08048307 add     eax, 1

0804830C mov     [ebp+var_24], eax

0804830F jmp     loc_80482E6

08048314 mov     eax, [ebp+len]

08048317 mov     [ebp+ret], eax

…	

…	

Fig. 6: Part of the control flow graph for the motivating example.

nc′ . For the new path, the basic blocks do not change before
nc′ or after nd. In between, we insert an intraprocedural path
from nc′ to nd G(nc′ , nd), which can be generated using the
control graph of the function. In the best case, the question is
equivalent to finding a path between two nodes in a directed
graph. However, it is possible that there is no such path to
rejoin the original path, or that the problem reduces to symbolic
exploration (if the divergence is too big). In this case, ShellSwap
falls back on the Two-Stage Fallback.

In the motivating example, as simply exiting the loop already
rejoins the original path, the detour back to the path is trivial: it
is the direct jump to the return site of the example function.

After constructing the new path, the ShellSwap system
generates the new exploitable program state and a new set of
path constraints using the Symbolic Tracing step. Meanwhile,
it also checks if the new program state is still exploitable. If
the new program state is exploitable, our system starts again
from the preprocessing phase to fit the replacement shellcode
into the new exploitable program state. Otherwise, the system
will attempt to construct the other paths and generate the other
program states, falling back on the Two-Stage Fallback if it is
unable to do so.

D. Two-Stage Fallback

If ShellSwap is unable to overcome the memory and path
conflicts and fit the replacement shellcode into the exploitable
state, then it falls back on pre-defined a two-stage shellcode
instead of the provided replacement shellcode. The motivation
of this fallback is straightforward: if the provided shellcode
cannot fit the exploitable state, even after Path Kneading, we
try a smaller first-stage replacement shellcode that can then
load an arbitrary second-stage shellcode.

There are several options for a first-stage shellcode. One
option is a shellcode that reads shell commands from the socket
and executes them. Another, to bypass modern defenses such
as Data Execution Protection, could read a Return Oriented

Programing payload over the stack and initiates a return. For
our prototype, we implemented a stack-based shellcode-loading
first-stage payload that reads a second-stage payload onto the
stack and jumps into it. While this is not immune from DEP
techniques, it is only meant as a proof of concept for our
prototype.

Consider the motivating example. The program receives input
by using the DECREE syscall receive() (more information
on DECREE is provided in Section VI), which is a system
call similar to recv() in Unix/Linux. If the new shellcode
is longer than 50 bytes, we cannot generate a new exploit
because the program is able to receive 50 bytes at most. In this
case, we could consider the following template for generating
a two-stage shellcode:

1 xor %eax,%eax 31 c0
2 inc %eax 40
3 inc %eax 40
4 inc %eax 40
5 xor %ebx,%ebx 31 db
6 inc %ebx 43
7 mov %esp,%ecx 89 e1 ; %ecx: &dst
8 mov _ ,%edx 8b _ ; %edx: len
9 mov _,%esi 8b _ ; %esi: &ret
10 int $0x80 cd 80
11 jmp *%esp ff e4

Listing 6: The disassembly of the template for a two-stage
shellcode.

This first-stage shellcode reads a string, stores at the bottom
of the stack (%esp) and jumps to the received string. There
are two blanks in the template – we need to fill the receiving
length and the address of return value for register %edx and
%esi, respectively. After completing the template, our system
will restart the layout remediation process with the two-stage
shellcode as the replacement shellcode. If the system cannot
find a modified exploit using the Two-Stage Fallback, it returns
an error indicating that no modified exploit could be found.
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Fig. 7: The generation of a new path. G(x, y) means a path between node x and y found by static analysis.

Although the two-stage shellcode helps to solve the shellcode
transplant problem by increasing the situations in which
ShellSwap can function, we consider this purely as a fallback.
This is because two-stage exploits may be less robust than
the other exploits, as they assume that the victim machine
can receive extra bytes from the attacker. This assumption
does not always hold. For instance, the victim machine may
be protected by other mechanisms which block the message,
such as an external firewall, or the network connection over
which communication happens might already be closed when
the vulnerability triggers. Therefore, our system prioritizes the
conflict resolution approaches, and it will not trigger the Two-
Stage Fallback when the previous layout remediation process
fails.

V. IMPLEMENTATION

ShellSwap is implemented on top of angr [29], a binary
analysis platform. We rely on angr’s symbolic tracing com-
ponent [3], which also leverages the QEMU emulator [1] for
exploit replay and symbolic tracing. The core of our system,
consists of about 2000 lines of Python code.

A. Finding Infeasible Constraint Sets
Finding a minimal subset of infeasible constraints, which

is an essential part of Path Kneading, is not a trivial problem.
The underlying constraint solver Z3, which is used in angr
(and thus in ShellSwap), provides an unsat_core function to
retrieve the smallest subset of an unsatisfiable set of constraints.
However, in our experiment, we found that unsat_core can
be very time consuming, and sometimes even lead to crashes
of Z3. Since we weren’t able to pinpoint the root cause of
the problem, we further implement a constraint set slimming
method (as described below) to resort to in case unsat_core
fails.

The constraint set slimming is a divide-and-conquer approach.
Given a constraint set A and a constraint c that contradicts A,
constraint set slimming will try to find a subset of constraints
in A (but not the smallest subset) that still contradicts c. We
first divide A into two subsets and check if any of them is
contradictory to constraint c. If both subsets contradict c, the
final infeasible constraint set will include conflicting constraints
subsets from the two. If only one subset contradicts c, the other
subset can be safely discarded as the result will only contain
conflicting constraints from the contradictory subset. We repeat
this procedure on contradictory subsets recursively until we
find the very last contradictory subset, which either contains a
single constraint that contradicts c, or several constraints that
none of which contradicts c if considered individually. The
union of all conflicting subsets of constraints represent the
slimmed set of constraints.

B. Optimizations

Much of the execution in symbolic tracing does not involve
symbolic data. To speed up the tracing step, ShellSwap enables
code JIT’ing (through the use of Unicorn Engine [24]) by
default, which allows instructions in the original exploit to be
executed natively instead of being emulated. While it greatly
speed up symbolic tracing, we find that this step is still the
bottleneck in ShellSwap: as discussed in Section VI, an average
of 95% of execution time is spent in this step.

To avoid generating an entire control-flow graph in our
path kneading component, we used a fast function detection
approach to pick out the exact function for which to generate
the control flow [9].

In the course of the development of this system, we have
upstreamed many big-fixes and some improvements to angr and
its tracing module. With these fixes, we observed a 1000-times
speed improvement on some samples in our evaluation.

VI. EVALUATION

In this section, we present our evaluation of ShellSwap. We
first describe the data set, including all vulnerable programs and
exploits, used in our evaluation (Section VI-A). Then, we show
the experimental setup in Section VI-B. Next, we demonstrate
the effectiveness of our approach in Section VI-C by evaluating
both ShellSwap and a reference implementation of previous
work on 20 original exploits and 5 pieces of replacement
shellcode. There, we show the necessity of ShellSwap in
effectively transplanting shellcode. In the end, we evaluate the
efficiency of ShellSwap and display the results in Section VI-D.

A. Data Set

Our evaluation data set contains three parts: 11 vulnerable
binaries, 20 original exploits, and 5 pieces of replacement
shellcode. We present how the data set is constructed below.

1) Vulnerable binaries: We selected 11 vulnerable binaries
(see Table I) from the qualifying event as well as the final
event of DARPA Cyber Grand Challenge (CGC). These
binaries are shipped with source code, reference exploits, and
actual exploits generated by other CGC participants, making
them a perfect fit for our evaluation. All of the binaries
are standalone x86 binaries with a special set of system
calls (DECREE syscalls), roughly analogous to the Linux
system calls recv (as DECREE’s receive), send (as
DECREE’s transmit), mmap (as DECREE’s allocate),
munmap (as DECREE’s deallocate), select (as DE-
CREE’s fdwait), get_random (as DECREE’s random),
and exit (as DECREE’s _terminate). Sizes of those
binaries range from 83 KB to 18 MB. Those vulnerable
binaries cover a wide range of subtypes of control flow hijack



vulnerabilities, including stack overflow, heap overflow, integer
overflow, arbitrary memory access, improper bound checking,
etc.

2) Exploits: As the CGC provides generators for reference
exploits, we generated a few exploits for each vulnerable binary,
for a total of 20 reference exploits (as is shown in Table I). It
is worth noting that exploits (or Proofs of Vulnerability in CGC
terminology) in CGC are special in the sense that each of them
should demonstrate attacker’s ability to fully control values in
two registers: the instruction pointer and one other register. As
a result, some generated exploits do not contain any shellcode.
We manually post-processed all exploits to make sure each
one of them has a piece of shellcode to execute in the end of
the exploitation.

3) Shellcode: As shown in Table II, we collected five
instances of replacement shellcode from three different sources,
four of which are from CGC finalists (ForAllSecure and
Shellphish), and one of which is manually crafted by ourselves.
This range of replacement shellcode instances is important: with
the shellcode coming from multiple sources, we can mimic the
setting of cyber attack customization in our experiments. We
refer to these instances as S1 through S5. Therefore, with five
instances of replacement shellcode for each of the 20 original
exploits in our dataset, we have a total of 100 modified exploits
for ShellSwap to generate.

B. Experiment Setup

One of the applications of transplanting shellcode is to
automatically reflect, or ricochet, an attack coming from a
rival. In this scenario, the victim first detects an exploit coming
from the attacker. They then automatically replace the payload
(the shellcode) in the exploit and replay the modified exploit
against the attacker. We try to simulate such a scenario in our
experiment, where the attacker emits original exploits and the
victim (or replayer/reflector) replays a modified exploit with
the shellcode replaced.

1) Machines.: Our experimental setup contains two ma-
chines: one machines hosts the DARPA Experimental Cyber
Research Evaluation Environment (DECREE), and the other
runs ShellSwap. DECREE runs on a virtual machine built
using an image provided by DARPA CGC [5, 6], which offers
an isolated environment for running and testing vulnerable
programs. It is assigned 1 CPU core and 1 GB of memory on
a host machine with Intel Core i7 2.8 GHz. The ShellSwap
machine is a standalone server with Intel Xeon E5-2630 v2 as
CPU and 96 GB of memory, running Ubuntu 14.04 LTS.

2) Process.: As is shown in Figure 8, the original exploits
are pre-generated for each vulnerable binary. ShellSwap takes
as input each pair of original exploit and replacement shellcode
and attempts to generate a modified exploit. We verify the
modified exploit against the binary in DECREE box to make
sure that it works and that the replacement shellcode is executed
with intended results. For testing and verification, we modified
the utility script cb-replay-pov shipped in DECREE.

3) Reference system for comparison.: To demonstrate the
necessity of our approach in tackling the shellcode transplant

problem, we reimplemented the shellcode placement method
in the work of Cha et al. [12] in a new system on top
of angr and used it as our reference system (codenamed
SystemM). We simulate shellcode transplanting in SystemM by
first re-triggering the exploit and then re-constraining individual
symbolic blocks in memory to the replacement shellcode one by
one until the modified exploit is created. If none of the symbolic
memory blocks is sufficiently large to hold the replacement
shellcode, or constraining every symbolic memory block to
replacement shellcode leads to an unsatisfiable exploitation state
(due to path conflicts), then we deem the shellcode transplanting
as having failed.

C. Effectiveness

Table I presents the effectiveness comparison between
SystemM and ShellSwap. There is a significant difference
between the number of modified exploits the two systems
successfully generated: SystemM successfully generated 31
exploits, whereas ShellSwap successfully generated 85 exploits.
The success rate for SystemM and ShellSwap are 31% and
85%, respectively. Not surprisingly, our method generated more
new exploits than previous work.

Statistics for all modified exploits successfully generated by
SystemM and ShellSwap are shown in Table III. ShellSwap
generated 57 exploits using only Layout Remediation and 28
more by leveraging Path Kneading. For comparison, we also
extended SystemM with Layout Remediation, resulting in, as
expected, an additional 26 more exploits over the base SystemM
implementation. Only 57% of all cases are successfully replaced
with new shellcode without Path Kneading, which demonstrates
the importance of conflict identification and kneading of the
exploit path during shellcode replacement.

In addition, we evaluate the two-stage fallback on all 20
exploits: we replace the original shellcode in each exploit
with the fallback shellcode and generate new exploits2. In our
experiment, the two-stage fallback worked on 19 out of 20
exploits. This is because the fallback shellcode is shorter (19
bytes) than any instance of the replacement shellcode, and is
thus more likely to fit into buffers under attacker controls.

Meanwhile, we observe that the success rate of shellcode
transplanting varies between different instances of replacement
shellcode (see Table IV). There is an expected negative
correlation between the success rate and the length of the
replacement shellcode. For example, shellcode S4 and S5,
which are both 37 byte long, have lower success rates than
other replacement shellcode that are shorter. This fits with
our intuition that the longer a piece of shellcode is, the more
conflicts it might produce during the shellcode transplant step,
and the more difficult it will be to generate a modified exploit.

Other results are less intuitive. For instance, S5 has a lower
success rate than S4, which is the same size. We looked into
failure cases, and we found that the failure is related to the null
byte in S5. S4 does not contain any null bytes. This conforms

2We do not evaluate all five instances of shellcode since any shellcode will
work in the second stage.



Binary Size Vulnerability Type Original
Exploits

Modified
Exploits SystemM ShellSwap

CADET_00001 83 KB Buffer Overflow 1 5 4 5
CROMU_00001 92 KB Integer Overflow 1 5 3 5
EternalPass 18 MB Untrusted Pointer 2 10 0 8
Hug_Game 3.1 MB Improper Bounds Checking 1 5 0 2
LUNGE_00002 1.6 MB Off-by-one Error 1 5 0 5
On_Sale 125 KB Buffer Overflow 4 20 14 20
OTPSim 106 KB Improper Bounds Checking 2 10 10 10
Overflow_Parking 92 KB Integer Overflow 1 5 0 0
SQL_Slammer 102 KB Buffer Overflow 3 15 0 12
Trust_Platform_Module 89 KB Buffer Overflow 3 15 0 15
WhackJack 105 KB Buffer Overflow 1 5 0 3
Total 20 100 31 85

TABLE I: This table shows the vulnerable binaries, the types of their vulnerabilities, the numbers of original exploits of each
binary, the total number of attempted exploit modifications (one replacement shellcode per original exploit per binary), and the
number of modified exploits successfully produced by SystemM and ShellSwap.
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Shellcode 

Fig. 8: Experiment setup.

Shellcode Length # Instruction Source
S1 26 Bytes 7 ForAllSecure
S2 29 Bytes 11 ForAllSecure
S3 22 Bytes 12 Shellphish
S4 37 Bytes 8 Shellphish
S5 37 Bytes 12 ShellSwap

TABLE II: The shellcode information.

Shellcode Layout Remediation Path Kneading
S1 12 7
S2 13 5
S3 14 5
S4 9 8
S5 9 3

Total 57 28

TABLE III: The number of the generated exploits for each
shellcode and each approach.

to the common knowledge that null bytes complicate shellcode,
which is why they are generally avoided by exploit authors:
since null bytes are so frequently used as string terminators,

Shellcode Length # Success Success Rate
S3 22 Bytes 19 95%
S1 26 Bytes 19 95%
S2 29 Bytes 18 90%
S4 37 Bytes 17 85%
S5 37 Bytes 12 60%

TABLE IV: Success rate for each instance of replacement
shellcode, sorted by length.

the existence of null bytes may negatively impact the success
of the exploit if data is moved around using something like
strcpy.

D. Efficiency

Table V shows the time cost for each instance of replacement
shellcode and each approach. The average time cost for Layout
Remediation is 19.73 seconds, while the average time cost for
Path Kneading is 9426.99 seconds. The dramatic difference
between the two is because the latter requires one or more
iterations of symbolic tracing, which, as we have previously
discussed, is an extremely time consuming process. We leave
further performance improvement as future work, and note that



Shellcode Layout Remediation Path Kneading
S1 18.85 5638.30
S2 21.05 10993.84
S3 20.38 8017.11
S4 21.01 7993.11
S5 17.36 14492.62

Average 19.73 9426.99

TABLE V: Average time cost (in seconds) for each instance
of replacement shellcode and each approach.

there are example optimizations in related work that could be
applied to this problem.

VII. DISCUSSION

ShellSwap’s results open up new possibilities for the fast
adaptation and analysis of software exploits. In this section,
we explore the implications of these results, the limitations of
the system, and the direction of our future work.

A. Ethical Concerns

ShellSwap raises the concern that it enables malicious
attackers to quickly adapt exploits against unwitting victims
on the internet. Unfortunately, such criticism can be applied to
almost all security research. Similar to known techniques such
as automatic exploit generation [7, 12] or automatic patch-based
exploit generation [11], the merit of the ShellSwap system and
its solution of the shellcode transplant problem is to show the
potential abilities of attackers and to highlight the possibility
that one can automatically modify exploits to tailor attacks to
custom requirements. Our hope is that, by showing that this is
possible, ShellSwap will motivate new research into defenses
against customized exploits.

B. Limitation

While ShellSwap makes fundamental contributions toward
the solution of the shellcode transplant problem, there is still
work left to be done. Here, we discuss specific weaknesses of
the system that could be addressed by future work.

1) Other types of vulnerabilities: Our system focuses
solely on control-flow hijack vulnerabilities, and we do not
address other vulnerability types, such as Information Leakage
and Denial of Service (DoS). To consider these types of
vulnerabilities, as well as other popular types, the shellcode
transplant problem would need to be redefined, as shellcode
is not utilized in exploits targeting these vulnerabilities. Thus,
to generalize ShellSwap, we must first define the analogous
problem in the context of a different vulnerabilities, and then
discuss possible designs to solve it.

We define the analogous problem for information leakage
vulnerabilities as the generation of a modified exploit that leaks
a different piece of data (whether a memory location, a file,
a variable in the program, etc.) than the original exploit does.
This is a complex task to accomplish: information leakage
exploits are hard to detect in the first place because monitoring
the information flow through a program is not EM-enforceable

in general. However, weaker variants such as taint tracking can
find a smaller set of information leakage vulnerabilities. For
example, evidence shows that Valgrind can detect information
leakage exploits such as the Heartbleed attack [31], given
test cases that trigger it (i.e., an exploit). Since, by definition,
ShellSwap receives such an exploit as input, a possible method
for ShellSwap to function on information leakage is to use
symbolic execution to find the correlation between the exploit
and the leaked information or its reference, and modify it
accordingly. In this case, the memory conflicts will likely not
come into play (since they are specific to placing replacement
shellcode in memory), but path conflicts will still occur, and
will need to be kneaded away, due to the modifications required
to re-target the leak. After identifying the relation, one can
come up with an exploit by solving the constraints.

We define the ricochet problem for Denial of Service
vulnerabilities as the generation of a modified exploit that
causes the same effect to the vulnerable program. Of course,
there is little modification required – if the original exploit
makes the program crash or hang at a given point, the modified
exploit should have the same effect. In this case, ShellSwap is
used purely as an exploit replaying system.

2) Exploit Replayabilty: ShellSwap assumes that the original
exploit is deterministically replayable, in the sense that the
exploit always succeeds when re-launched against the target.
However, this assumption does not always hold. For instance, a
vulnerable server may implement a challenge-response protocol
that requires the client to send messages with a nonce that
the two sides negotiated at the beginning of the session. This
nonce would change when we replay the exploit, and the exploit
would fail. Asymmetric encryption and sources of randomness
from the environment can also manifest in such failures. To
generate the modified exploit for such case, ShellSwap would
have to consider an exploit as a state machine rather than a
series static bytes, which would require fundamental extensions
of the design.

This being said, our experiments showed that most of
the exploits in our dataset are replayable, and our system
is applicable for this majority. We intend to investigate the
replaying of non-deterministic exploits in future work.

3) Modern Defense Mechanisms: Modern systems have
memory protection mechanisms such as Address Space Layout
Randomization (ASLR) and Data Execution Prevention (DEP).
However, such protection mechanisms can be bypassed by
properly-crafted exploits.

Our solution to the shellcode transplant problem is based
on an functional original exploit, which implies that this
exploit has already bypassed the required defense mechanisms.
When this is the case, ShellSwap’s replacement exploit often
bypasses these mitigation techniques as well. For example,
DEP is often bypassed through the use of Return Oriented
Programming that chains pieces of code (termed gadgets) in a
program to map an executable page (using the Linux mmap or
DECREE allocate syscalls), insert shellcode into it, and
execute it. Alternatively, the page containing the shellcode (for
example, the program stack) can simply be marked executable



by mprotect. For such exploits, ShellSwap bypasses DEP
by reusing the original exploit’s DEP bypass and replacing the
final mapped shellcode with the replacement shellcode. If the
replacement shellcode cannot be located at the same location
as the original shellcode, the final control flow transfer of the
mitigation bypass stage must be modified to point at the new
location. This can be done with the constraint solver as an
adaptation of the Path Kneading phase discussed in Section IV.

However, in the more general case of DEP bypass (for
example, when a pure ROP payload is used, with no mapped
shellcode), future work is required to solve the ROP chain
transplant problem.

Bypassing ASLR is similar. One way to bypass ASLR, in
the absence of DEP, is to overwrite the instruction pointer
to point to jmp *%reg with a register %reg referring to
a register location that currently points to the shellcode. A
typical instance of the instruction is jmp *%esp. For the
ShellSwap system, the modified exploit is able to bypass the
ASLR protection if 1) the original exploit is able to bypass
ASLR and 2) the beginning of the replacement shellcode is
placed at the same start address as the shellcode in the original
exploit (to which control flow is transferred after DEP bypass,
for example). In this way, when the program dereferences
a function pointer or returns a function, it will jump to the
address of the start of the original shellcode, which is also the
start of the replacement shellcode, and the modified exploit will
succeed. Again, the final shellcode location can be modified
through an adaptation of the Path Kneading phase.

More complex cases, including exploits that require an
information disclosure step (to break ASLR), are currently
not supported by ShellSwap. We plan to explore these in future
work, and would welcome collaboration in this area.

C. Future Work

We plan to explore, and hope to see other researchers
investigate, four main areas of future work.

First, ShellSwap can be extended to deal with encrypted,
packed, or obfuscated traffic. In theory, our approach can handle
these cases, because we assume knowledge the encryption key
and because the decryption/decoding/deobfuscation functional-
ity is in the original binary. However, the exploration of cases
that do not assume knowledge of the encryption key would
be interesting (albeit probably impossible in cryptographically-
secure cases). A further generalization of this is the ability to
successfully transplant shellcode in the presence of nondeter-
minism. Currently, ShellSwap cannot handle nondeterministic
behavior, and some fundamental problems would need to be
addressed to enable its operation on this.

Second, it would be interesting to make ShellSwap usable
in an on-line capacity, where instead of modifying exploits
and launching them at a later date, ShellSwap could perform
the exploit live against the remote system, modifying it as
appropriate based on that system’s operation. Symbolic tracing
is the current bottleneck of achieving this capability, but it can
likely be improved by leveraging optimizations from related
work [8, 25, 28]. Interestingly, the ability to function on-line

would allow ShellSwap to reason about information disclosure
in the course of an exploit to defeat ASLR, which is something
that is not currently possible.

Third, the extension of ShellSwap to the ROP chain
transplant problem would be an interesting future direction.
Related work in the field of automatic ROP payload generation
can be leveraged toward this end [27, 29].

Finally, ShellSwapcan be expanded to support the generation
of shellcode that is semantically equivalent to the replacement
shellcode while having different contents to satisfy path
constraints. Such shellcode polymorphism would increase
the cases in which ShellSwap can resolve path conflicts.
For example, we could consider building up a dictionary of
“instruction synonyms”, or creating templates to interchange
instructions without changing the semantics.

VIII. RELATED WORK

A. Automatic Exploit Generation

An exploit is valuable to attackers only when it suits attack-
ers’ specific goal. The technique of automatically generating
an exploit with a piece of shellcode is called automatic exploit
generation (AEG) [7, 11, 20, 27]. Those work are mostly
based on dynamic symbolic execution. AEG is closely related
to ShellSwap in the sense that they both take a vulnerable
program and a piece of shellcode and generate a viable exploit.

Helaan et al. [17] proposed how to place shellcode in
memory: scan through the memory and find symbolic memory
gaps that are big enough to hold the entire piece of shellcode.
For each gap, they try to put shellcode at different offsets by
constraining symbolic memory bytes beginning at that offset
to the actual bytes of the shellcode. This procedure continues
until the shellcode is put in a memory gap or all gaps have
been tried.

As we have demonstrated in our evaluation, AEG techniques
are not suitable for shellcode transplanting, as they lack prin-
cipled approach to diagnose and resolve conflicts imposed by
replacement shellcode, and must resort to symbolic exploration.
Our system makes it possible to adapt and retrofit an existing
exploit to different instances of shellcode efficiently.

B. Intrusion Detection

In ShellSwap we detect attacks triggering software vulnera-
bilities and capture exploits by enforcing a set of taint-based
security policies during dynamic symbolic tracing. Traditionally,
taint tracking implemented on dynamic binary instrumentation
frameworks (e.g. Pin [22] and Valgrind [23]) is used to
detect attacks during runtime, Xu et al. [32], Autograph[19],
Vigilante [14], and Bouncer [13] are all reasonable choices.
While those solutions are more performant than symbolic
tracing, ShellSwap cannot use them as they do not record
path constraints, which are vital to our approach.

C. Manual Ricochet Attacks in the Wild

Ricochet attacks are widely adopted in competitive attack-
defense contests today. The CTF team Shellphish has stated at
DEF CON:



“Stealing and replaying exploits has become very
popular; basically, it is the main way in which most
teams attack others these days. I think that, during
the last DEF CON, a majority of our flags (aka
points) were coming from running ‘stolen’ exploits.”

The CTF team PPP has also stated they inspected network
traffic to find new vulnerabilities, which helped them score
points and win DEF CON CTF in 2013 and 2014.

However, while the concept of ricochet attacks is well-known
within the hacking-competition community [2, 4], it does not
appear to have received much direct attention elsewhere. To
the best of the knowledge, our system is the first end-to-end
automatic ricochet attack generation system.

IX. CONCLUSION

In this paper, we introduce the automatic shellcode trans-
planting problem. Given a program, an exploit and a piece of
shellcode, this problem asks how to automatically generate a
new exploit that targets the potentially unknown vulnerability
present in the program and executes the given shellcode.

We also propose ShellSwap, which is the system for
automatic shellcode transplant for remote exploits. To our best
knowledge, the ShellSwap system is the first automatic system
that generally apply different shellcode on the exploits for
unknown vulnerabilities. In our experiment, we evaluated the
ShellSwap system on a combination of 20 exploits and 5 pieces
of shellcode that are independently developed and different
from the original exploit. Among the 100 test cases, our
ShellSwap system successfully generated 85% of the exploits.
Our results imply that exploit generation no longer requires
delicate exploit skills. For those victims who are not familiar
with exploit knowledge, they can also generate their exploits.
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